# FAIRCHILD

SEMICONDUCTOR

# 74VCX16245 Low Voltage 16-Bit Bidirectional Transceiver with 3.6V Tolerant Inputs and Outputs

#### **General Description**

The VCX16245 contains sixteen non-inverting bidirectional buffers with 3-STATE outputs and is intended for bus oriented applications. The device is byte controlled. Each byte has separate 3-STATE control inputs which can be shorted together for full 16-bit operation. The  $T/\overline{R}$  inputs determine the direction of data flow through the device. The  $\overline{OE}$  inputs disable both the A and B ports by placing them in a high impedance state.

The 74VCX16245 is designed for low voltage (1.65V to 3.6V)  $V_{CC}$  applications with I/O compatibility up to 3.6V.

The 74VCX16245 is fabricated with an advanced CMOS technology to achieve high speed operation while maintaining low CMOS power dissipation.

#### Features

- 1.65V–3.6V V<sub>CC</sub> supply operation
- 3.6V tolerant inputs and outputs
- t<sub>PD</sub>
- 2.5 ns max for 3.0V to 3.6V V\_{CC} 3.0 ns max for 2.3V to 2.7V V\_{CC}
- 6.0 ns max for 1.65V to 1.95V V<sub>CC</sub> ■ Power-down high impedance inputs and outputs
- Fower-down high impedance inputs and outputs
  Supports live insertion/withdrawal (Note 1)

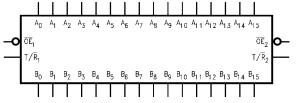
October 1996

Revised August 2001

- Static Drive (I<sub>OH</sub>/I<sub>OL</sub>)
  - ±24 mA @ 3.0V V<sub>CC</sub>
  - ±18 mA @ 2.3V V<sub>CC</sub> ±6 mA @ 1.65V V<sub>CC</sub>
- Uses patented noise/EMI reduction circuitry
- Latchup performance exceeds 300 mA
- ESD performance: Human body model > 2000V
  - Machine model >200V
  - Iviachine model >200V
- Also packaged in plastic Fine-Pitch Ball Grid Array (FBGA) (Preliminary)

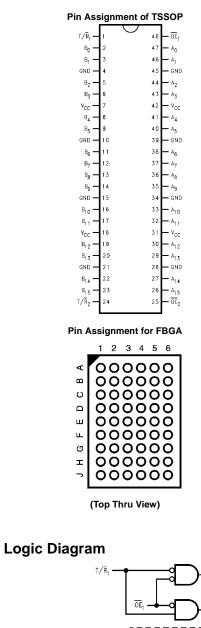
Note 1: To ensure the high-impedance state during power up or power down,  $\overline{\text{OE}}$  should be tied to  $V_{\text{CC}}$  through a pull-up resistor; the minimum value of the resistor is determined by the current-sourcing capability of the driver.

#### **Ordering Code:**


| Order Number              | Package Number | Package Description                                                                    |
|---------------------------|----------------|----------------------------------------------------------------------------------------|
| 74VCX16245GX<br>(Note 2)  |                | 54-Ball Fine-Pitch Ball Grid Array (FBGA), JEDEC MO-205, 5.5mm Wide<br>[Tape and Reel] |
| 74VCX16245MTD<br>(Note 3) | MTD48          | 48-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 6.1mm Wide            |

Note 2: BGA package available in Tape and Reel only.

© 2001 Fairchild Semiconductor Corporation


Note 3: Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

# Logic Symbol



DS012169

# 74VCX16245



**Connection Diagrams** 

#### **Pin Descriptions**

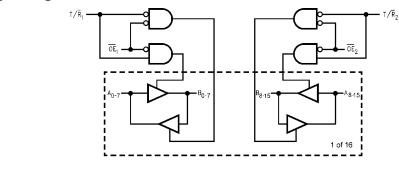
| Pin Names                       | Description                      |
|---------------------------------|----------------------------------|
| OEn                             | Output Enable Input (Active LOW) |
| T/R <sub>n</sub>                | Transmit/Receive Input           |
| A <sub>0</sub> -A <sub>15</sub> | Side A Inputs or 3-STATE Outputs |
| B <sub>0</sub> -B <sub>15</sub> | Side B Inputs or 3-STATE Outputs |
| NC                              | No Connect                       |

#### **FBGA Pin Assignments**

|   | 1               | 2               | 3                | 4               | 5               | 6               |
|---|-----------------|-----------------|------------------|-----------------|-----------------|-----------------|
| Α | B <sub>0</sub>  | NC              | T/R <sub>1</sub> | OE <sub>1</sub> | NC              | A <sub>0</sub>  |
| В | B <sub>2</sub>  | B <sub>1</sub>  | NC               | NC              | A <sub>1</sub>  | A <sub>2</sub>  |
| С | B <sub>4</sub>  | B <sub>3</sub>  | V <sub>CC</sub>  | V <sub>CC</sub> | A <sub>3</sub>  | A <sub>4</sub>  |
| D | B <sub>6</sub>  | B <sub>5</sub>  | GND              | GND             | A <sub>5</sub>  | A <sub>6</sub>  |
| E | B <sub>8</sub>  | В <sub>7</sub>  | GND              | GND             | A <sub>7</sub>  | A <sub>8</sub>  |
| F | B <sub>10</sub> | B <sub>9</sub>  | GND              | GND             | A <sub>9</sub>  | A <sub>10</sub> |
| G | B <sub>12</sub> | B <sub>11</sub> | V <sub>CC</sub>  | V <sub>CC</sub> | A <sub>11</sub> | A <sub>12</sub> |
| Н | B <sub>14</sub> | B <sub>13</sub> | NC               | NC              | A <sub>13</sub> | A <sub>14</sub> |
| J | B <sub>15</sub> | NC              | $T/R_2$          | OE <sub>2</sub> | NC              | A <sub>15</sub> |

#### **Truth Tables**

| Inj             | outs             | <b>2</b> (1) (1)                                                                |  |  |  |
|-----------------|------------------|---------------------------------------------------------------------------------|--|--|--|
| OE <sub>1</sub> | T/R <sub>1</sub> | Outputs                                                                         |  |  |  |
| L               | L                | Bus B <sub>0</sub> –B <sub>7</sub> Data to Bus A <sub>0</sub> –A <sub>7</sub>   |  |  |  |
| L               | Н                | Bus $A_0 - A_7$ Data to Bus $B_0 - B_7$                                         |  |  |  |
| Н               | Х                | HIGH Z State on A <sub>0</sub> -A <sub>7</sub> , B <sub>0</sub> -B <sub>7</sub> |  |  |  |
| Inp             | uts              | Quitavita                                                                       |  |  |  |
| OE <sub>2</sub> | T/R <sub>2</sub> | Outputs                                                                         |  |  |  |
| L               | L                | Bus $B_8 - B_{15}$ Data to Bus $A_8 - A_{15}$                                   |  |  |  |
| L               | н                | Bus $A_8 - A_{15}$ Data to Bus $B_8 - B_{15}$                                   |  |  |  |


HIGH Z State on A8-A15, B8-B15

H = HIGH Voltage Leve

н

Х

L = LOW Voltage Level X = Immaterial (HIGH or LOW, inputs and I/O's may not float) Z = High Impedance



#### Absolute Maximum Ratings(Note 4)

#### Recommended Operating

| Supply Voltage (V <sub>CC</sub> )              | -0.5V to +4.6V          |
|------------------------------------------------|-------------------------|
| DC Input Voltage (VI)                          | -0.5V to +4.6V          |
| Output Voltage (V <sub>O</sub> )               |                         |
| Outputs 3-STATE                                | -0.5V to +4.6V          |
| Outputs Active (Note 5)                        | –0.5 to $V_{CC}$ + 0.5V |
| DC Input Diode Current ( $I_{IK}$ ) $V_I < 0V$ | –50 mA                  |
| DC Output Diode Current (I <sub>OK</sub> )     |                         |
| V <sub>0</sub> < 0V                            | –50 mA                  |
| V <sub>O</sub> > V <sub>CC</sub>               | +50 mA                  |
| DC Output Source/Sink Current                  |                         |
| (I <sub>OH</sub> /I <sub>OL</sub> )            | ±50 mA                  |
| DC V <sub>CC</sub> or Ground Current per       |                         |
| Supply Pin (I <sub>CC</sub> or Ground)         | ±100 mA                 |
| Storage Temperature Range (T <sub>STG</sub> )  | -65°C to +150°C         |

| Conditions (Note 6)                                    | 9                              |
|--------------------------------------------------------|--------------------------------|
| Power Supply                                           |                                |
| Operating                                              | 1.65V to 3.6V                  |
| Data Retention Only                                    | 1.2V to 3.6V                   |
| Input Voltage                                          | -0.3V to 3.6V                  |
| Output Voltage (V <sub>O</sub> )                       |                                |
| Output in Active States                                | 0V to $V_{CC}$                 |
| Output in 3-STATE                                      | 0.0V to 3.6V                   |
| Output Current in I <sub>OH</sub> /I <sub>OL</sub>     |                                |
| $V_{CC} = 3.0V$ to 3.6V                                | ±24 mA                         |
| $V_{CC} = 2.3V$ to 2.7V                                | ±18 mA                         |
| $V_{CC} = 1.65V$ to 2.3V                               | ±6 mA                          |
| Free Air Operating Temperature $(T_A)$                 | $-40^\circ C$ to $+85^\circ C$ |
| Minimum Input Edge Rate ( $\Delta t/\Delta V$ )        |                                |
| $V_{\text{IN}}$ = 0.8V to 2.0V, $V_{\text{CC}}$ = 3.0V | 10 ns/V                        |

74VCX16245

Note 4: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the Absolute Maximum Ratings. The Recommended Operating Conditions tables will define the conditions for actual device operation.

Note 5: I<sub>O</sub> Absolute Maximum Rating must be observed.

Note 6: Floating or unused pin (inputs or I/O's) must be held HIGH or LOW.

# DC Electrical Characteristics (2.7V < $v_{\text{CC}} \leq$ 3.6V)

| Symbol           | Parameter                             | Conditions                                  | v <sub>cc</sub><br>(V) | Min                   | Max  | Units |
|------------------|---------------------------------------|---------------------------------------------|------------------------|-----------------------|------|-------|
| VIH              | HIGH Level Input Voltage              |                                             | 2.7–3.6                | 2.0                   |      | V     |
| VIL              | LOW Level Input Voltage               |                                             | 2.7–3.6                |                       | 0.8  | V     |
| V <sub>OH</sub>  | HIGH Level Output Voltage             | I <sub>OH</sub> = -100 μA                   | 2.7-3.6                | V <sub>CC</sub> - 0.2 |      |       |
|                  |                                       | $I_{OH} = -12 \text{ mA}$                   | 2.7                    | 2.2                   |      | v     |
|                  |                                       | I <sub>OH</sub> = -18 mA                    | 3.0                    | 2.4                   |      | v     |
|                  |                                       | I <sub>OH</sub> = -24 mA                    | 3.0                    | 2.2                   |      |       |
| V <sub>OL</sub>  | LOW Level Output Voltage              | I <sub>OL</sub> = 100 μA                    | 2.7–3.6                |                       | 0.2  |       |
|                  |                                       | $I_{OL} = 12 \text{ mA}$                    | 2.7                    |                       | 0.4  | v     |
|                  |                                       | I <sub>OL</sub> = 18 mA                     | 3.0                    |                       | 0.4  | v     |
|                  |                                       | I <sub>OL</sub> = 24 mA                     | 3.0                    |                       | 0.55 |       |
| lı               | Input Leakage Current                 | $0V \le V_I \le 3.6V$                       | 2.7–3.6                |                       | ±5.0 | μΑ    |
| l <sub>oz</sub>  | 3-STATE Output Leakage                | $0V \le V_O \le 3.6V$                       | 27.20                  |                       | 110  |       |
|                  |                                       | $V_I = V_{IH}$ or $V_{IL}$                  | 2.7–3.6                |                       | ±10  | μA    |
| I <sub>OFF</sub> | Power Off Leakage Current             | $0V \le (V_I, V_O) \le 3.6V$                | 0                      |                       | 10   | μA    |
| I <sub>CC</sub>  | Quiescent Supply Current              | $V_I = V_{CC}$ or GND                       | 2.7–3.6                |                       | 20   |       |
|                  |                                       | $V_{CC} \leq (V_I, V_O) \leq 3.6V$ (Note 7) | 2.7–3.6                |                       | ±20  | μA    |
| Δl <sub>CC</sub> | Increase in I <sub>CC</sub> per Input | $V_{IH} = V_{CC} - 0.6V$                    | 2.7-3.6                |                       | 750  | μA    |

Note 7: Outputs disabled or 3-STATE only.

| 45     |  |
|--------|--|
| 62     |  |
| Σ      |  |
| S      |  |
| 4      |  |
| $\sim$ |  |

# DC Electrical Characteristics (2.3V $\leq$ V\_{CC} $\leq$ 2.7V)

| Symbol           | Parameter                 | Conditions                                | V <sub>CC</sub><br>(V) | Min                   | Мах  | Units |  |
|------------------|---------------------------|-------------------------------------------|------------------------|-----------------------|------|-------|--|
| V <sub>IH</sub>  | HIGH Level Input Voltage  |                                           | 2.3–2.7                | 1.6                   |      | V     |  |
| V <sub>IL</sub>  | LOW Level Input Voltage   |                                           | 2.3–2.7                |                       | 0.7  | V     |  |
| V <sub>OH</sub>  | HIGH Level Output Voltage | I <sub>OH</sub> = -100 μA                 | 2.3–2.7                | V <sub>CC</sub> - 0.2 |      |       |  |
|                  |                           | $I_{OH} = -6 \text{ mA}$                  | 2.3                    | 2.0                   |      | V     |  |
|                  |                           | $I_{OH} = -12 \text{ mA}$                 | 2.3                    | 1.8                   |      | v     |  |
|                  |                           | $I_{OH} = -18 \text{ mA}$                 | 2.3                    | 1.7                   |      |       |  |
| V <sub>OL</sub>  | LOW Level Output Voltage  | I <sub>OL</sub> = 100 μA                  | 2.3–2.7                |                       | 0.2  |       |  |
|                  |                           | $I_{OL} = 12 \text{ mA}$                  | 2.3                    |                       | 0.4  | V     |  |
|                  |                           | I <sub>OL</sub> = 18 mA                   | 2.3                    |                       | 0.6  |       |  |
| l <sub>l</sub>   | Input Leakage Current     | $0 \le V_1 \le 3.6V$                      | 2.3–2.7                |                       | ±5.0 | μA    |  |
| I <sub>OZ</sub>  | 3-STATE Output Leakage    | $0 \le V_O \le 3.6V$                      | 2.3–2.7                |                       | ±10  | μA    |  |
|                  |                           | $V_I = V_{IH} \text{ or } V_{IL}$         |                        |                       |      |       |  |
| I <sub>OFF</sub> | Power Off Leakage Current | $0 \leq (V_I, V_O) \leq 3.6V$             | 0                      |                       | 10   | μA    |  |
| I <sub>CC</sub>  | Quiescent Supply Current  | $V_I = V_{CC}$ or GND                     | 2.3–2.7                |                       | 20   |       |  |
|                  |                           | $V_{CC} \le (V_I, V_O) \le 3.6V$ (Note 8) | 2.3–2.7                |                       | ±20  | μA    |  |

Note 8: Outputs disabled or 3-STATE only.

# DC Electrical Characteristics (1.65V $\leq$ V\_{CC} < 2.3V)

| Symbol           | Parameter                 | Conditions                                          | V <sub>CC</sub><br>(V) | Min                   | Мах                  | Units |
|------------------|---------------------------|-----------------------------------------------------|------------------------|-----------------------|----------------------|-------|
| VIH              | HIGH Level Input Voltage  |                                                     | 1.65-2.3               | $0.65 \times V_{CC}$  |                      | V     |
| VIL              | LOW Level Input Voltage   |                                                     | 1.65-2.3               |                       | $0.35 \times V_{CC}$ | V     |
| V <sub>OH</sub>  | HIGH Level Output Voltage | I <sub>OH</sub> = -100 μA                           | 1.65-2.3               | V <sub>CC</sub> - 0.2 |                      | V     |
|                  |                           | $I_{OH} = -6 \text{ mA}$                            | 1.65                   | 1.25                  |                      | v     |
| V <sub>OL</sub>  | LOW Level Output Voltage  | I <sub>OL</sub> = 100 μA                            | 1.65-2.3               |                       | 0.2                  | V     |
|                  |                           | $I_{OL} = 6 \text{ mA}$                             | 1.65                   |                       | 0.3                  | v     |
| l <sub>l</sub>   | Input Leakage Current     | $0 \le V_I \le 3.6V$                                | 1.65-2.3               |                       | ±5.0                 | μA    |
| I <sub>OZ</sub>  | 3-STATE Output Leakage    | $0 \le V_O \le 3.6V$                                | 1.65-2.3               |                       | ±10                  | μA    |
|                  |                           | $V_I = V_{IH} \text{ or } V_{IL}$                   |                        |                       |                      |       |
| I <sub>OFF</sub> | Power Off Leakage Current | $0 \leq (V_I, V_O) \leq 3.6V$                       | 0                      |                       | 10                   | μA    |
| I <sub>CC</sub>  | Quiescent Supply Current  | $V_I = V_{CC}$ or GND                               | 1.65-2.3               |                       | 20                   |       |
|                  |                           | $V_{CC} \leq (V_I, V_O) \leq 3.6V \text{ (Note 9)}$ | 1.65-2.3               |                       | ±20                  | μA    |

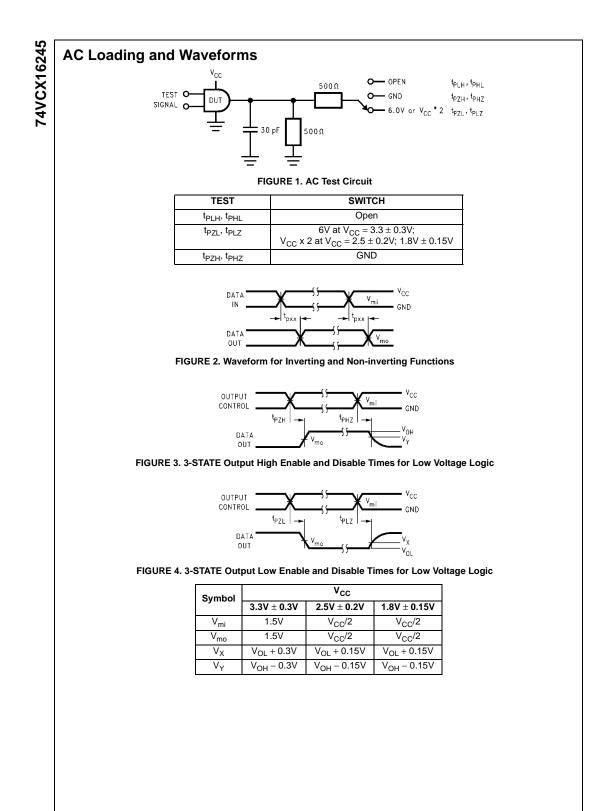
Note 9: Outputs disabled or 3-STATE only.

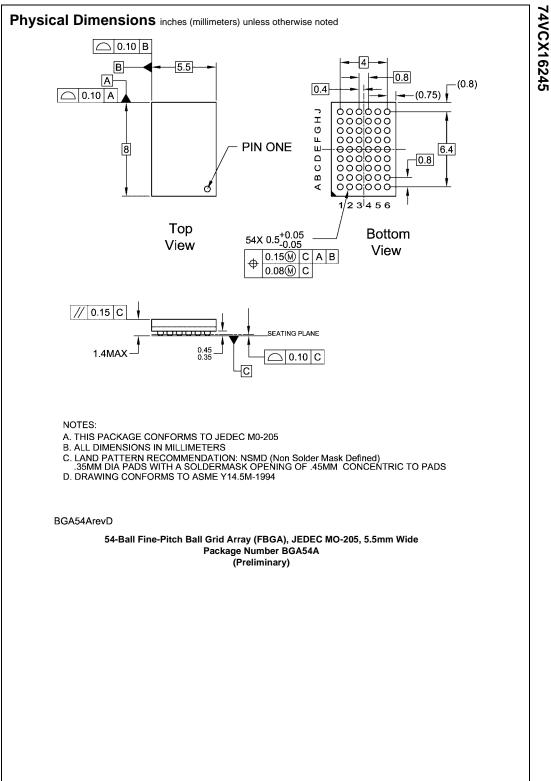
# AC Electrical Characteristics (Note 10)

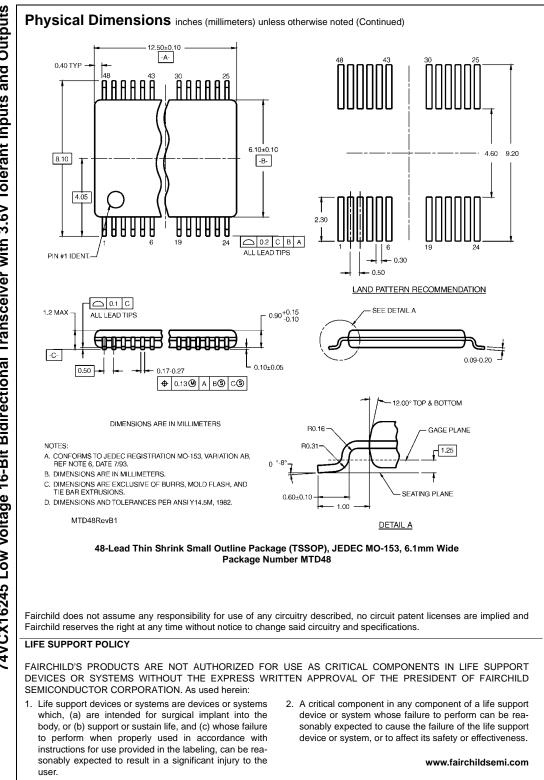
| Symbol                              |                     |                      | $T_{A}=-40^{\circ}\text{C}$ to +85°C, $C_{L}=30$ pF, $R_{L}=500\Omega$ |     |                                                             |     |                       |    |
|-------------------------------------|---------------------|----------------------|------------------------------------------------------------------------|-----|-------------------------------------------------------------|-----|-----------------------|----|
|                                     | Parameter           | V <sub>CC</sub> = 3. | $V_{CC}=3.3V\pm0.3V$                                                   |     | $\textbf{V}_{\textbf{CC}} = \textbf{2.5} \pm \textbf{0.2V}$ |     | $V_{CC}=1.8V\pm0.15V$ |    |
|                                     |                     | Min                  | Max                                                                    | Min | Max                                                         | Min | Max                   |    |
| t <sub>PHL</sub> , t <sub>PLH</sub> | Prop Delay          | 0.8                  | 2.5                                                                    | 1.0 | 3.0                                                         | 1.5 | 6.0                   | ns |
| t <sub>PZL</sub> , t <sub>PZH</sub> | Output Enable Time  | 0.8                  | 3.8                                                                    | 1.0 | 4.9                                                         | 1.5 | 9.3                   | ns |
| t <sub>PLZ</sub> , t <sub>PHZ</sub> | Output Disable Time | 0.8                  | 3.7                                                                    | 1.0 | 4.2                                                         | 1.5 | 7.6                   | ns |
| t <sub>OSHL</sub>                   | Output to Output    |                      | 0.5                                                                    |     | 0.5                                                         |     | 0.75                  | ns |
| t <sub>OSLH</sub>                   | Skew (Note 11)      |                      |                                                                        |     |                                                             |     |                       |    |

Note 10: For  $C_{\text{L}}$  = 50pF, add approximately 300ps to the AC maximum specification.

Note 11: Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH-to-LOW (t<sub>OSHL</sub>) or LOW-to-HIGH (t<sub>OSLH</sub>).


#### **Dynamic Switching Characteristics**


| Symbol           | Parameter              | Conditions                                          | V <sub>CC</sub><br>(V) | $\frac{T_A = +25^{\circ}C}{Typical}$ | Units |
|------------------|------------------------|-----------------------------------------------------|------------------------|--------------------------------------|-------|
| V <sub>OLP</sub> | Quiet Output Dynamic   | $C_L = 30 \text{ pF}, V_{IH} = V_{CC}, V_{IL} = 0V$ | 1.8                    | 0.25                                 |       |
|                  | Peak V <sub>OL</sub>   |                                                     | 2.5                    | 0.6                                  | V     |
|                  |                        |                                                     | 3.3                    | 0.8                                  |       |
| V <sub>OLV</sub> | Quiet Output Dynamic   | $C_L = 30 \text{ pF}, V_{IH} = V_{CC}, V_{IL} = 0V$ | 1.8                    | -0.25                                |       |
|                  | Valley V <sub>OL</sub> |                                                     | 2.5                    | -0.6                                 | V     |
|                  |                        |                                                     | 3.3                    | -0.8                                 |       |
| V <sub>OHV</sub> | Quiet Output Dynamic   | $C_L = 30 \text{ pF}, V_{IH} = V_{CC}, V_{IL} = 0V$ | 1.8                    | 1.5                                  |       |
|                  | Valley V <sub>OH</sub> |                                                     | 2.5                    | 1.9                                  | V     |
|                  |                        |                                                     | 3.3                    | 2.2                                  |       |


# Capacitance

| Symbol           | Parameter                     | Conditions                                                                                 | $T_A = +25^{\circ}C$ | Units |
|------------------|-------------------------------|--------------------------------------------------------------------------------------------|----------------------|-------|
| C <sub>IN</sub>  | Input Capacitance             | $V_{CC}$ = 1.8V, 2.5V, or 3.3V, $V_I$ = 0V or $V_{CC}$                                     | 6                    | pF    |
| C <sub>I/O</sub> | Output Capacitance            | $V_{I}$ = 0V, or $V_{CC},V_{CC}$ = 1.8V, 2.5V or 3.3V                                      | 7                    | pF    |
| C <sub>PD</sub>  | Power Dissipation Capacitance | $V_{I} = 0V \text{ or } V_{CC}, F = 10 \text{ MHz}$ $V_{CC} = 1.8V, 2.5V \text{ or } 3.3V$ | 20                   | pF    |

74VCX16245





